Chapter 6 Study Questions

1. Draw an energy diagram for an exothermic reaction where $\Delta \mathrm{H}=-20 \mathrm{~kJ}$.
2. Classify each of the following processes as endothermic or exothermic. In each case, indicate which has greater heat content (enthalpy), reactants or products.
a) combustion of natural gas
b) condensation of water vapor
c) splitting of carbon dioxide into carbon and oxygen
d) solidification of melted wax
e) formation of sodium chloride (NaCl) from it elements
f) evaporation of alcohol
3. Propane gas, $\mathrm{C}_{3} \mathrm{H}_{8}$, is a common fuel for camp stoves.
a) What is $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ for propane? (Use $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ Table.)
b) Write a balanced thermochemical equation for the formation of propane from its elements.
c) Is this reaction endothermic or exothermic?
d) How many moles of H_{2} are needed to produce 1090 kJ according to the equation in b)?
e) How much heat is produced during the formation of 30.1 g of propane?
f) Write a balanced chemical equation for the complete combustion of propane.
g) Find $\Delta \mathrm{H}$ for the reaction in f) using $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ Table and Hess' Law.
4. For each of the reactions below, calculate $\Delta \mathrm{H}$ and indicate whether the reaction is endothermic or exothermic. (Use $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ Table as needed.)
a) $2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}_{2}(g)$
b) $6 \mathrm{PbO}(s)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{~Pb}_{3} \mathrm{O}_{4}(s)$
5. A coffee cup calorimeter is used to calculate the heat change when $\mathrm{NH}_{4} \mathrm{Cl}$ is dissolved in water. Use the data table below to calculate the heat change when 1.00 mole of $\mathrm{NH}_{4} \mathrm{Cl}$ is dissolved in water. (Assume that the heat change for the solution is the same as that of water alone and that you can ignore the mass of solid in the water, so use only the mass of water and the specific heat of water, $4.18 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$, in calculating the heat change.)

Mass of $\mathrm{NH}_{4} \mathrm{Cl}=5.03 \mathrm{~g}$
Mass of water in the coffee cup $=60.0 \mathrm{~g}$
Initial temperature of the water $=24.78{ }^{\circ} \mathrm{C}$
Final temperature of the water $=19.23{ }^{\circ} \mathrm{C}$
Is this process endothermic or exothermic?
6. To change the temperature of a particular calorimeter and the water it contains by one degree Celsius requires 6485 Joules. The complete combustion of 1.40 g of ethylene gas, $\mathrm{C}_{2} \mathrm{H}_{4}$, in the calorimeter causes a temperature rise of 10.7 degrees. Find the heat of combustion per mole of ethylene.
7. Calculate $\Delta \mathrm{H}$ for the reaction: $\quad \mathrm{N}_{2} \mathrm{H}_{4}(l)+\mathrm{O}_{2}(g) \rightarrow \mathrm{N}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)$ given the following data:

$$
\begin{array}{ll}
2 \mathrm{NH}_{3}(g)+3 \mathrm{~N}_{2} \mathrm{O}(g) \rightarrow 4 \mathrm{~N}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(l) & \Delta \mathrm{H}=-1010 \mathrm{~kJ} \\
\mathrm{~N}_{2} \mathrm{O}(g)+3 \mathrm{H}_{2}(g) \rightarrow \mathrm{N}_{2} \mathrm{H}_{4}(l)+\mathrm{H}_{2} \mathrm{O}(l) & \Delta \mathrm{H}=-317 \mathrm{~kJ} \\
2 \mathrm{NH}_{3}(g)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{N}_{2} \mathrm{H}_{4}(l)+\mathrm{H}_{2} \mathrm{O}(l) & \Delta \mathrm{H}=-143 \mathrm{~kJ} \\
\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(l) & \Delta \mathrm{H}=-286 \mathrm{~kJ}
\end{array}
$$

Summary of Chapter 6: Thermochemistry

heat content = enthalpy
change in heat content $(\Delta \mathrm{H})$
heat content diagrams
endothermic, exothermic
change in heat content associated with physical and chemical changes
calorimetry: calculation of heat change from temperature change
joules, calories
specific heat
$\Delta \mathrm{H}_{\text {fus }} \& \Delta \mathrm{H}_{\text {vap }}$
$\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$, definition \& use of table to find heat changes of chemical reactions complete combustion
thermochemical equations
$\Delta \mathrm{H} /$ mole conversions
Hess' Law

Answers to Chapter 6 Study Questions

2. a) exothermic, reactants
b) exothermic, reactants
c) endothermic, products
d) exothermic, reactants
e) exothermic, reactants
f) endothermic, products
3. a) $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)=-103.8 \mathrm{~kJ} / \mathrm{mol}$
b) $3 \mathrm{C}(\mathrm{s})+4 \mathrm{H}_{2}(g) \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}(g) \quad \Delta \mathrm{H}=-103.8 \mathrm{~kJ}$
c) exothermic
d) $1090 \mathrm{~kJ} \times \frac{4 \mathrm{~mol} \mathrm{H}}{2} 103.8 \mathrm{~kJ}=42.0$ moles H_{2}
e) $30.1 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8} \times \frac{1 \mathrm{~mol} \mathrm{C}_{3} H_{8}}{44.0 \mathrm{~g} C_{3} H_{8}} \quad x \frac{103.8 \mathrm{~kJ}}{1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}}=71.0 \mathrm{~kJ}$
f) $\mathrm{C}_{3} \mathrm{H}_{8}(g)+5 \mathrm{O}_{2}(g) \rightarrow 3 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(l)$
g) $\Delta \mathrm{H}($ reaction $)=3 \Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}\left(\mathrm{CO}_{2}\right)+4 \Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)-\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$

$$
\begin{aligned}
& =3(-393.5 \mathrm{~kJ})+4(-285.8 \mathrm{~kJ})-(-103.8 \mathrm{~kJ}) \\
& =-1180+(-1143)+103.8=-2220 \mathrm{~kJ}
\end{aligned}
$$

4. a) from the $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ Table:
(i) $\quad \frac{1}{2} \mathrm{~N}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{NO}(g) \quad \Delta \mathrm{H}=+90.4 \mathrm{~kJ}$
(ii) $\quad \frac{1}{2} \mathrm{~N}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow \mathrm{NO}_{2}(g) \quad \Delta \mathrm{H}=+33.9 \mathrm{~kJ}$;

$$
\begin{array}{ll}
-2 \times(\mathrm{i})= & 2 \mathrm{NO}(g) \rightarrow \quad \mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \quad \Delta \mathrm{H}=-2(90.4)=-180.8 \mathrm{~kJ} \\
2 \times(\mathrm{ii})= & \mathrm{N}_{2}(g)+2 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}_{2}(g) \quad \Delta \mathrm{H}=2(33.9)=67.8 \mathrm{~kJ} ;
\end{array}
$$

overall reaction $=2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}_{2}(g) \quad \Delta \mathrm{H}=-180.8+67.8=-113.0 \mathrm{~kJ}$ Exothermic
b) (i) $\quad \mathrm{Pb}(s)+0.5 \mathrm{O}_{2}(g) \rightarrow \mathrm{PbO}(s) \quad \Delta \mathrm{H}=-217.9 \mathrm{~kJ}$
(ii) $3 \mathrm{~Pb}(s)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{Pb}_{3} \mathrm{O}_{4}(s) \quad \Delta \mathrm{H}=-734.7 \mathrm{~kJ}$; therefore:

$$
\begin{aligned}
& 2 \mathrm{x}(\mathrm{ii})=6 \mathrm{~Pb}(s)+4 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{~Pb}_{3} \mathrm{O}_{4}(s) \quad \Delta \mathrm{H}=2(-734.7)=-1469 \mathrm{~kJ} \\
& -6 \mathrm{x}(\mathrm{i})=6 \mathrm{PbO}(s) \rightarrow 6 \mathrm{~Pb}(s)+3 \mathrm{O}_{2}(g) \quad \Delta \mathrm{H}=-6(-217.9)=+1307 \mathrm{~kJ}
\end{aligned}
$$

overall reaction $=6 \mathrm{PbO}(s)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{~Pb}_{3} \mathrm{O}_{4}(s) \quad \Delta \mathrm{H}=-1469+1307=-162 \mathrm{~kJ}$ Exothermic
5. $\mathrm{Q}(\mathrm{J})=$ specific heat $\left(\mathrm{J} / \mathrm{g}{ }^{\circ} \mathrm{C}\right) \mathrm{x}$ mass $(\mathrm{g}) \mathrm{x} \quad \Delta \mathrm{T}\left({ }^{\circ} \mathrm{C}\right) ; \Delta \mathrm{T}=19.23-24.78=-5.55^{\circ} \mathrm{C}$
$\mathrm{Q}=4.18 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C} \times 60.0 \mathrm{~g} \mathrm{x}-5.55^{\circ} \mathrm{C}=1390 \mathrm{~J}$
1 mole $\mathrm{NH}_{4} \mathrm{Cl} \times \frac{1390 \mathrm{~J}}{5.03 \mathrm{~g} \mathrm{NH} 44} \mathrm{Cl} \times \frac{53.5 \mathrm{~g} \mathrm{NH} \mathrm{Cl}}{1 \mathrm{~mol} \mathrm{NH} \mathrm{H}_{4} \mathrm{Cl}}=14,800 \mathrm{~J}=14.8 \mathrm{~kJ} / \mathrm{mole}$
Endothermic
6. $\mathrm{Q}=6485 \mathrm{~J} /{ }^{\circ} \mathrm{C} \times 10.7^{\circ} \mathrm{C}=69,400 \mathrm{~J}=69.4 \mathrm{~kJ}$

1 mole $\mathrm{C}_{2} \mathrm{H}_{4} \times \frac{28.0 \mathrm{~g} \mathrm{C}_{2} H_{4}}{1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{4}} \times \frac{69.4 \mathrm{~kJ}}{1.40 \mathrm{~g} C_{2} \mathrm{H}_{4}}=1390 \mathrm{~kJ}=1.39 \times 10^{3} \mathrm{~kJ}$
7.

$$
\begin{array}{ll}
2 \mathrm{NH}_{3}(g)+3 \mathrm{~N}_{2} \mathrm{O}(g) \rightarrow 4 \mathrm{~N}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(l) & \Delta \mathrm{H}=-1010 \mathrm{~kJ} \\
3 \mathrm{~N}_{2} \mathrm{H}_{4}(l)+3 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow 3 \mathrm{~N}_{2} \mathrm{O}(g)+9 \mathrm{H}_{2}(g) & \Delta \mathrm{H}=3(+317) \mathrm{kJ} \\
\mathrm{~N}_{2} \mathrm{H}_{4}(l)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{NH}_{3}(g)+1 / 2 \mathrm{O}_{2}(g) & \Delta \mathrm{H}=+143 \mathrm{~kJ} \\
9 \mathrm{H}_{2} \underline{(g)+4 \frac{1}{2} \mathrm{O}_{2}} \underline{2} \underline{(g) \rightarrow 9 \mathrm{H}_{2} \underline{\mathrm{O}(l)}} \begin{array}{ll}
4 \mathrm{~N}_{2} \mathrm{H}_{4}(l)+4 \mathrm{O}_{2}(g) \rightarrow 4 \mathrm{~N}_{2}(g)+8 \mathrm{H}_{2} \mathrm{O}(l) & \Delta \mathrm{H}=9(-286) \mathrm{kJ} \\
\hline \mathrm{H}=-2490 \mathrm{~kJ}
\end{array}
\end{array}
$$

for the reaction, $\mathrm{N}_{2} \mathrm{H}_{4}(l)+\mathrm{O}_{2}(g) \rightarrow \mathrm{N}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l), \Delta \mathrm{H}=(-2490) / 4=-623 \mathrm{~kJ}$

